COMPUTER MODELING IN THE AEROSPACE INDUSTRY

E H H

EDITED BY

Computer Modeling in the Aerospace Industry

Edited by Iftikhar B. Abbasov

This edition first published 2020 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2020 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-66131-3

Cover image: Chromakinetic | Dreamstime.com Cover design by Kris Hackerott

W42689

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Contents

Abstract			xiii	
Preface				xv
1	Computer Simulation in Aircraft Iftikhar B. Abbasov			1
			lation of Aircraft	1
	1.2	Simu	lation of Rocket	3
	1.3	Mode	eling of Streamlined Surfaces	5
	1.4		lation of the Be-200 Amphibious Aircraft	6
	1.5		eptual Model of Aircraft "Chiroptera"	9
	1.6	Conc	eptual Design of "Lotos" Motorcar	14
			ences	19
2	Conceptual Modeling of Amphibian Aircrafts Iftikhar B. Abbasov and V'iacheslav V. Orekhov			23
	2.1		the History of World Civil Aviation	24
		2.1.1	Introduction	24
		2.1.2	Historical Stages of Hydroaviation Development	
			by the Beriev Aircraft Company	25
	2.2	Com	putational Modeling of Multipurpose Amphibious	
		Aircr	aft Be-200	30
		2.2.1	Introduction	30
		2.2.2	Modeling Methods and Stages	31
		2.2.3	Shading of 3D Model	35
		2.2.4	Rendering of 3D Model	36
		2.2.5	Conclusion	38
	2.3	Com	putational Modeling of Passenger Amphibian Aircraft	
			00 Cabin Interior	38
		2.3.1	Introduction	38
			Variants of Cabin Layout	40
		2.3.3	Aircraft Cabin Modeling	43

viii Contents

	2.3.4	Shading of Aircraft Cabin Objects	45
	2.3.5	Rendering of Aircraft Cabin	47
	2.3.6	Conclusion	48
2.4	Comp	outational Modeling of Amphibious Aircraft Be-103	50
	2.4.1	Introduction	50
	2.4.2	Modeling Methods and Stages	51
	2.4.3	Shading of 3D-Model	56
	2.4.4	Rendering of 3D-Model	58
	2.4.5	Conclusion	60
2.5	Conceptual Model of "Lapwing" Amphibious Aircraft		
	2.5.1		60
	2.5.2	Concept Development	61
	2.5.3	3D Modeling of Amphibious Aircraft "Lapwing"	68
	2.5.4	Shading and Rendering of 3D Model of "Lapwing"	
		Amphibious Aircraft	71
2.6	Comp	putational Modeling of the Cabin Interior of the	
	Conce	eptual Model of Amphibian Aircraft "Lapwing"	74
	2.6.1	Introduction	74
	2.6.2	The Concept of the Amphibian Aircraft "Lapwing"	75
	2.6.3	Layout Concepts	77
	2.6.4	Development of a Passenger Seat	78
	2.6.5	Modeling of the Cabin Interior	81
	2.6.6	Assignment of Materials and Rendering of the Scene	81
	2.6.7	Usability and Comfort Cabin Interior	83
	2.6.8	Conclusion	85
2.7	Conceptual Model and Interior Design "Water Strider"		
	Ekran	oplan	85
	2.7.1	Introduction	85
	2.7.2	Review of Ekranoplans	86
	2.7.3	Review of Publications	92
	2.7.4	Concept of an Ekranoplan of "Water Strider"	93
	2.7.5	Configuration of the Concept of an Ekranoplan	96
	2.7.6	Stages of Modeling	96
	2.7.7	Shading and Rendering of Model	100
	2.7.8	Development of an Interior and Passenger Chair	101
	2.7.9	Creation of Materials and Rendering of an Interior	104
	2.7.10	Conclusion	107
2.8	Desig	n of Multifunctional Hydrofoil "Afalina"	108
	2.8.1	Introduction	108
	2.8.2	Research Overview	109

		2.8.3 Development of the Concept	112			
		2.8.4 Ship Modeling	114			
		2.8.5 Shading and Rendering of the Model	115			
		2.8.6 Conclusion	119			
	2.9	Autonomous Mobile Robotic System "Sesarma"	119			
		2.9.1 Introduction	119			
		2.9.2 Review of Publications	119			
		2.9.3 Review of the Analogues	120			
		2.9.4 Robot Structure	121			
		2.9.5 Modeling Concept	123			
		2.9.6 Modeling Stages	123			
		2.9.7 Creation and Assignment of Materials	126			
		2.9.8 Lighting Installation and Rendering	128			
		2.9.9 Conclusion	129			
		References	129			
3	Development of Schemes of Multirotor Convertiplanes with					
		ogenic and Hybrid Powerplants	137			
	•	Dmitriy S. Durov				
	3.1	Introduction	137			
	3.2	Hydro Convertiplane is the New Opportunity for				
		Modern Aviation	138			
	3.3	Peculiarities of Control of the Vertical Takeoff and Landing				
		Aircraft in the Transitional and Hovering Mode	143			
	3.4	Problems of Stability and Controllability of Hydro				
		Convertiplane with Tandem-Mounted Rotors in				
		Rotary Annular Channels	148			
	3.5	Cryogenic Turboelectric Aircrafts are a Good Solution for				
		Short-Range and Takeoff Hybrid Airline Complexes	150			
	3.6	Conclusion	154			
		References	158			
4	Cor	nceptual Design of A Multifunctional Amphibious Plane	161			
		acheslav V. Orekhov				
	4.1	Introduction, Historical Stages	161			
	4.2	Concept	167			
	4.3	•	170			
	4.4	Application of Materials, Rendering	171			
	4.5	Conclusion	176			
		References	176			

x Contents

5	Mathematical Model of Unmanned Aircraft with Elliptical Wing					
				179		
	Sergey A. Sinutin, Alexander A. Gorbunov,					
	and Yekaterina B. Gorbunova					
	5.1	Intro	duction	180		
	5.2	Resea	arch Objective	180		
	5.3	Resea	arch Technique	181		
	5.4	Hard	ware Implementation	181		
	5.5	The F	Program Research Part	183		
	5.6	Studi	es of the Behavior of an Unmanned Aircraft with an			
		Ellipt	ical Wing	184		
	5.7	Expe	rimental Studies of the UA Behavior	187		
	5.8	_	essing and Analysis of Data Obtained during			
			t Tests	189		
	5.9	Form	ation of a Mathematical Model of UA with			
		Ellipt	ical Wing	193		
	5.10	Math	ematical Model of UA in Analytical Form	193		
	5.11	Obtai	ining a Mathematical Model using the			
			k Box" Method	195		
	5.12	Math	ematical Model Based on Linear Regression	197		
			ematical Model Based on Multilayer Perceptron	200		
			Controller Setup	201		
			t Emulation for Primary Quality Control of			
		0	egulator	203		
	5.16	Conc		205		
		Refer	ences	208		
6	Tech	nolog	y of Geometric Modeling of Dynamic Objects			
U		-	sses of Virtual Environment for Aviation-Space	211		
			s Construction			
		riy G.		211		
	6.1		duction	211		
	6.2		ods of Applied Geometry in Solving Problems of	211		
			lation Modeling in SVR	216		
			Optimum Discretization of Curved Lines	210		
			Curve Integral Model	217		
		6.2.3		221		
		0.4.5	Discrete Curve Frames	222		
		6.2.4	Optimal Discretization Based on Integral	<i>444</i>		
		0.4.4	Curve Model	224		
				<u> 4</u> 4		

	Col	NTENTS	xi	
-	oses and Objectives of the Extravehicular Activit Cosmonaut Operator on the ISS in Open Space,	y of the		
	ology of Computer Simulation in the			
		2	229	
			-47	
6.3.1	Extravehicular Activity of the RTS Cosmonaut		229	
())	Operator		229	
6.3.2	Technologies of Methodical and Hardware-Sof	tware		
	Implementation of a Cosmonaut-Operator's	~		
	Simulator		232	
6.3.3	Dynamic Virtual Model of the Manipulator	2	235	
6.3.4	Software Technologies for the Formation of			
	Dynamic Models of the Editor-Modeler	2	239	
Experimental Studies of the Functional Completeness of				
TMS Graphics and Software 241			241	
6.4.1	Information and Functional Power			
	of the TMS Visualizer	2	241	
6.4.2	An Example of a Simulator of a Typical Flight	Mission a	at	
	Solar Battery Installation		244	
6.4.3	The Technology of Testing Emergency Situatio	ns 2	248	

Experimental Search for a Safe Trajectory of

254

255

258

261

6.3

6.4

Index

6.4.4

6.5 Conclusion

References

ERA Movement

Devoted to advances in the field of computer simulation of aerospace equipment, this study is the most up-to-date coverage of the state-of-the-art on coastal and passenger aircraft, drones, and other recent developments in this constantly changing field.

This book is devoted to unique developments in the field of computer modeling in aerospace engineering. The book describes the original conceptual models of amphibious aircraft, ground-effect vehicles, hydrofoil vessels, and others, from theory to the full implementation in industrial applications.

The developed models are presented with the design of passenger compartments and are actually ready for implementation in the aircraft industry. The originality of the concepts are based on biological prototypes, which are ergonomic, multifunctional and aesthetically pleasing. The aerodynamic layout of prospective convertible land and ship-based aircrafts of vertical and short takeoff-landing is presented, as well as the development of the original model of the unmanned aerial vehicle, or drone. The results of full-scale experiments are presented, including the technology of modeling aerospace simulators based on the virtual reality environment with technical vision devices.

Whether for the practicing engineer in the field, the engineering student, or the scientist interested in new aerospace developments, this volume is a must-have.

This groundbreaking new volume:

- Presents unique developments of coastal aircraft concepts based on biological prototypes, from the idea to the finished model
- · Gives the process of modeling the original unmanned aerial vehicle
- Investigates aerospace simulators based on virtual reality environment with technical vision devices
- Covers the original ideas of creating carrier-based aviation for sea ships and the results of field experiments simulating an unmanned aerial vehicle
- Provides many useful illustrations of naval aviation

Audience:

The book is intended for aerospace engineers, mechanical engineers, structural engineers, researchers and developers in the field of aerospace industry, for aircraft designers and engineering students. It will be useful for scientists, students, graduate students and engineers in the field of naval aviation and space simulators.

Iftikhar B. Abbasov, PhD, is a specialist in mathematical modeling, computer engineering and industrial design at the Southern Federal University in Russia. He has numerous publications to his credit, focusing on the use of mathematical modeling and high-level computer programming for practical applications such as ocean exploration, coastal engineering and aircraft, with several books also available from Wiley-Scrivener.

Cover Design: Kris Hackerott Cover Image: Cockpit flightdeck - Chromakinetic | | Dreamstime.com

Also available as an e-book

Visit us at wiley.com

www.scrivenerpublishing.com

