1342990

ВЫСШЕЕ ОБРАЗОВАНИЕ

В. А. Романюк

ОСНОВЫ РАДИОСВЯЗИ

УЧЕБНИК

В. А. Романюк

ОСНОВЫ РАДИОСВЯЗИ

УЧЕБНИК ДЛЯ ВУЗОВ

Рекомендовано Учебно-методическим отделом высшего образования в качестве учебника для студентов высших учебных заведений, обучающихся по инженерно-техническим направлениям и специальностям

Книга доступна на образовательной платформе «Юрайт» urait.ru, а также в мобильном приложении «Юрайт.Библиотека»

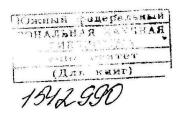
Москва • Юрайт • 2022

P69

Автор:

Романюк Виталий Александрович — кандидат технических наук, доцент кафедры микроэлектронных радиотехнических устройств и систем Московского государственного института электронной техники. Ведет курсы радиопередающих и радиоприемных устройств, его научно-технические интересы лежат в области создания микроэлектронных генераторов СВЧ.

Романюк, В. А.


Основы радиосвязи: учебник для вузов / В. А. Романюк. — Москва: Издательство Юрайт, 2022. — 288 с. — (Высшее образование). — Текст: непосредственный.

ISBN 978-5-534-00675-9

В учебнике изложены механизмы работы систем и устройств радиосвязи. Значительное внимание уделено радиоволнам их генерированию, излучению, распространению в различных средах, линиях передачи и околоземном пространстве. Приведены основные характеристики и параметры антенн, передатчиков и приемников. Описаны процессы. происходящие в связных радиосистемах: генерирование электромагнитных колебаний, формирование радиосигналов, усиление их мощности, выделение слабых сигналов из помех, преобразование частоты, детектирование.

Приведены основные данные о радиосистемах, их дальности действия, помехоустойчивости, способах оптимального приема. В последней главе описаны современные системы и стандарты радиосвязи.

УДК 621.3(075.8) ББК 32.84я73

Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

Оглавление

Введение	1
Глава 1. Радиоволны	10
1.1. Электромагнитное поле	10
1.2. Уравнения Максвелла	12
1.3. Радиоволны в идеальном диэлектрике	
без зарядов	14
1.4. Энергия электромагнитного поля	16
1.5. Монохроматические волны в идеальном	
пространстве	17
1.6. Поляризация радиоволн	19
1.7. Представление монохроматических волн	
в виде комплексных амплитуд	21
1.8. Радиоволны в диэлектрике с потерями энергии	23
1.9. Радиоволны в проводниках. Скин-эффект	26
	20
Глава 2. Радиоволны в линиях передачи	30
2.1. Типы передающих линий	30
2.2. Поперечно-магнитные волны	33
2.3. Поперечно-электрические волны	36
2.4. Фазовая и групповая скорости волн	36
2.5. Длина волны в линии	38
2.6. Затухающие электромагнитные поля	38
2.7. Радиоволны в прямоугольном волноводе	39
2.8. Волны ТЕМ-типа	42
2.9. Телеграфные уравнения	44
2.10. Решение телеграфных уравнений	47
2.11. Режимы работы линий передачи	48
2.12. Коэффициент стоячей волны напряжения.	=0
Коэффициент отражения	52
2.13. Передача энергии в нагрузку	53
2.14. Условия существования режима бегущих волн	54
Глава 3. Излучение и распространение радиоволн	57
3.1. Диполь Герца	57
3.2. Ближняя и дальняя зоны излучателя	
3.3. Диаграмма направленности антенны	
3.4. Излучение рамочной антенны	65
3.5. Излучение плоскости	
3.6. Типы антенн	
3.7. Основные параметры антенн	
3.8. Влияние атмосферы на распространение	ad 9 =
радиоводн	75

000	
3.9. Особенности распространения радиоволн	77
в различных частотных диапазонах	11
F / F	ovvet 91
Глава 4. Генерирование электромагнитных колеб	ании 01 01
4.1. Структурная схема автогенератора	
4.2. Негатронная модель автогенератора	03
4.3. Резонаторы автогенераторов	83
4.4. Транзисторные автогенераторы	92
4.5. Условия существования стационарного	
режима колебаний	95
4.6. Устойчивость стационарного режима	4
и условие возбуждения колебаний	98
4.7. Стабильность частоты колебаний	100
4.8. Шумы в автогенераторах	103
4.9. Электрические схемы транзисторных	
автогенераторов	107
4.10. Кварцевые автогенераторы	109
4.11. Генераторы, управляемые напряжением	
Глава 5. Синтез частот	120
5.1. Фазовая автоподстройка частоты	
автогенераторов	120
5.2. Описание элементов цепи ФАПЧ	122
5.3. Передаточные характеристики петли	
ФАПЧ автогенераторов	125
5.4. Фильтрующие свойства петли ФАПЧ	128
5.5. Устойчивость системы ФАПЧ	131
5.6. Фазовый шум автогенератора, охваченного	
петлей ФАПЧ	134
5.7. Шпоры в выходном спектре ГУНа	138
5.8. Синтезаторы частот	139
J.O. CHITCOATOPIA TACTOT	
Глава 6. Усиление мощности электромагнитных	
колебаний	144
6.1. Структура усилителя мощности	
6.2. Технические требования, предъявляемые	
к усилителям мощности	146
6.3. Характеристики и параметры биполярного	
транзистора	1/8
транзистора	140
о.4. механизм раооты транзистора как активного элемента	1.40
	149
6.5. Линейный режим работы транзистора	4 = 4
в усилителе мошности	151

6.6. Более эффективные режимы работы	
транзистора	154
6.7. Оптимальное сопротивление нагрузки	
транзистора в усилителе мощности	159
6.8. Оптимальные режимы биполярного	
транзистора в мощных усилителях	161
6.9. Согласование транзистора с источником	
сигнала и нагрузкой	163
6.10. Усилители мощности диапазона СВЧ	165
6.11. Увеличение коэффициента усиления,	
выходной мощности и КПД усилителей	170
BBROGION MOMITOCH II 1914 Jenemann	10.101.1
Глава 7. Формирование радиосигналов	176
7.1. Видеосигналы и радиосигналы	176
7.2. Амплитудная модуляция	178
7.3. Однополосная модуляция	182
7.4. Частотная модуляция	186
7.5 Модуляция цифровыми сигналами	191
11	
Глава 8. Прием и преобразование радиосигналов	200
8.1. Шумы в радиоприемниках	200
8.2. Основные параметры и функциональные	
схемы радиоприемников	203
8.3. Физические процессы в супергетеродинном	
приемнике	206
8.4. Преобразователи частоты	208
8.5. Транзисторные смесители	211
8.6. Детектирование радиосигналов	212
Глава 9. Общие сведения о радиосистемах связи	220
9.1. Структурная схема цифровой связной	
радиосистемы	221
9.2. Обнаружение сигналов	224
9.3. Способы увеличения отношения сигнал/шум	
в приемнике радиостанции	228
9.4. Псевдослучайная последовательность	
импульсов	232
9.5. Корреляционный способ обнаружения	235
9.6. Дальность действия связной радиостанции	237
Глава 10. Современные системы радиосвязи	240
10.1. Виды связных радиосистем	240
10.2. Транкинговые системы	
10.3. Беспроводные сети	243

10.4. Стандарты беспроводной связи	245
10.5. Стандарт Bluetooth	247
10.6. Стандарт DECT	250
10.7. Сотовые системы связи	252
10.8. Спутниковые системы	257
10.9. Системы связи без несущей частоты	258
Заключение	262
Приложения	264
Литература	288

ОСНОВЫ РАДИОСВЯЗИ

УЧЕБНИК

РОМАНЮК Виталий Александрович

кандидат технических наук, доцент кафедры микроэлектронных радиотехнических устройств и систем Московского государственного института электронной техники. Ведет курсы радиопередающих и радиоприемных устройств, его научно-технические интересы лежат в области создания микроэлектронных генераторов СВЧ.

В учебнике изложены механизмы работы систем и устройств радиосвязи. Значительное внимание уделено радиоволнам — их генерированию, излучению, распространению в различных средах, линиях передачи и околоземном пространстве. Приведены основные характеристики и параметры антенн, передатчиков и приемников. Описаны процессы, происходящие в связных радиосистемах: генерирование электромагнитных колебаний, формирование радиосигналов, усиление их мощности, выделение слабых сигналов из помех, преобразование частоты, детектирование.

Приведены основные данные о радиосистемах, их дальности действия, помехоустойчивости, способах оптимального приема. В последней главе описаны современные системы и стандарты радиосвязи.

Количество учебных завадений, которые уже выбрали это издание:

50

9 785534 006759