Г.Г. Себряков, О.Н. Корсун, Г.А. Лаврова, А.О. Лавров, А.В. Полиев, В.Н. Юрко

СОВРЕМЕННЫЕ АУДИОТЕХНОЛОГИИ В ИНФОРМАЦИОННО-УПРАВЛЯЮЩЕМ ПОЛЕ КАБИНЫ ПИЛОТОВ

Г.Г. Себряков, О.Н. Корсун, Г.А. Лаврова, А.О. Лавров, А.В. Полиев, В.Н. Юрко

СОВРЕМЕННЫЕ АУДИОТЕХНОЛОГИИ В ИНФОРМАЦИОННО-УПРАВЛЯЮЩЕМ ПОЛЕ КАБИНЫ ПИЛОТОВ

MOCKBA • 2021

УДК 629.052 ББК 39.56 С 568

1543053

Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту № 21-18-00045, не подлежит продаже.

Авторы:

Себряков Г.Г., Корсун О.Н., Лаврова Г.А., Лавров А.О., Полиев А.В., Юрко В.Н.

С 568 Современные аудиотехнологии в информационно-управляющем поле кабины пилота / Г.Г. Себряков [и др.]. — М. : ИД Академии Жуковского, 2021. — 360 с. : илл.

ISBN 978-5-907490-26-0

Монография содержит результаты оригинальных исследований авторов по созданию алгоритмов аудиоинтерфейсов кабины пилотов. Предложены методы распознавания речевых команд, устойчивые к акустическим шумам, исследованы алгоритмы и точность технологии 3D-аудио, имитирующей положение источника звука в заданной точке пространства. Представлены методы оценивания состояния пилота как по речи, так и по изображению лица, сигналам электроэнцефалограммы, отклонениям штурвала.

Математический аппарат включает сверхточные нейронные сети, машинное обучение, цифровую фильтрацию, динамическое программирование, спектральный и корреляционный анализ, математическую статистику.

> УДК 629.052 ББК 39.56

Оглавление

введение	10
ЧАСТЬ 1. АВТОМАТИЧЕСКОЕ РАСПОЗНАВАНИЕ РЕЧЕВЫХ КОМАНД	
В СОСТАВЕ ИНТЕРФЕЙСА ВОЗДУШНЫХ СУДОВ	14
1. Обзор подходов к формированию речевого интерфейса	
бортового оборудования современных самолетов	15
1.1. Анализ области применения речевых интерфейсов	17
1.2. Частотно-временное квантование речевого сигнала.	
Алгоритм распознавания путем сравнения с эталонами	20
1.3. Разработка алгоритмов нахождения численных характерис	ТИК
слов в речевых командах и законов их распределения	26
1.3.1. Проверка гипотезы о нормальности распределения	
отклонений элементов портрета слова от эталона	27
1.3.2. Анализ влияния амплитуды слова на оцениваемые	
характеристики	
1.3.3. Приведение слов одного диктора к равным амплитуда	ім 31
1.3.4. Расчет энергии слова, длительности и средней частот	Ы
для разных дикторов	31
1.3.5. Полученные результаты	
1.4. Скрытая марковская модель	35
1.5. Искусственные нейронные сети	
1.6. Речевая передаточная функция диктора по частоте	
1.6.1. Алгоритм вычисления передаточных функций диктора	
по частоте	45
1.6.2. Зависимость оценок речевой передаточной функции	
от состава и объема речевого материала	
1.7. Влияние пилотажной перегрузки на характеристики речи	
1.7.1. Экспериментальное оборудование и методика	
проведения экспериментов	
1.7.2. Оцениваемые характеристикиречевых сигналов	
1.7.3. Порядок проведения экспериментов	
1.7.4. Результаты экспериментов по определению	
характеристик речевых сигналов	56

	1.7.5. Анализ результатов экспериментальных исследований	
	воздействия перегрузки на характеристики речевых сигналов	61
	1.8. Подстройка длительности распознаваемого слова	66
2.	Разработка методов распознавания речевых команд	
	для применения в составе интерфейса кабины	
	современных самолетов	.70
	2.1. Исследование свойств речевых сигналов в условиях	
	акустических шумов, действующих в кабине	
	современных самолетов	70
	2.1.1. Анализ требований действующих нормативных	
	документов в части допустимых уровней шума в кабине	
	пилотов современных пассажирских самолетов и вертолетов	70
	2.1.2. Разработка методики выполнения эксперимента при	
	калиброванном уровне акустических шумов, соответствующих	
	фону в кабине пилотов современных пассажирских самолетов	72
	2.1.3. Разработка методики и выполнение экспериментов	
	по оцениванию влияния акустического шума на оператора,	
	приводящего к изменению диагностических признаков	
	речевых команд	73
	2.1.4. Влияние шума на частотные свойства речи	74
	2.2. Метод снижения влияния шума на основе формирования	
	специальных эталонов и обратной связи	76
	2.3. Разработка методов помехоустойчивого распознавания	
	речевых команд в системах речевого интерфейса авиационного	
	оборудования на основе использования дополнительного	
	микрофона	84
	2.3.1. Аналитическое исследование преобразования	
	спектральных плотностей смеси сигнала и шума	
	2.3.2. Применение дополнительного микрофона	85
	2.3.3. Разработка метода подавления акустических помех,	
	основанного на множественной линейной регрессии	88
	2.3.4. Экспериментальное оценивание помехоустойчивого	
	алгоритма с применением дополнительного микрофона	
	в случае аддитивного шума	88
	2.4. Разработка алгоритмов оптимального разбиения слов	
		96
	2.4.1. Формирование критериев оптимального разбиения	96

2.4.2. Постановка задачи
2.4.3. Формирование критериев оптимизации
2.4.4. Условия и порядок перебора
2.4.5. Решение оптимизационной задачи методом динамического
программирования для оптимизации по быстродействию.
Применение стандартной схемы динамического
программирования104
2.4.6. Разработка модифицированной схемы динамического
программирования105
2.4.7. Экспериментальная проверка работоспособности
метода108
2.5. Распознавание речевых команд на основе использования
стационарных соотношений с эталонами «чужих» слов111
2.5.1. Распознавание на основе сравнения с эталонами
2.5.2. Распознавание на основе сравнения с «чужими»
эталонами114
2.5.3. Модифицированная мера близости
2.5.4. Экспериментальное оценивание эффективности
разработанных подходов
2.6. Использование нескольких эталонов в распознавании речи:
формула Байеса и метод комитетов
2.6.1. Получение параметрического портрета
2.6.2. Метод Байеса – постановка задачи
2.6.3. Расчет апостериорных вероятностей по формуле Байеса 122
2.6.4. Экспериментальное оценивание условных вероятностей 124
2.6.5. Расчет апостериорных вероятностей гипотез
при использовании двух и более критериев
2.6.6. Учет показателей качества распознавания
2.6.7. Метод комитетов
2.6.8. Экспериментальная проверка эффективности
предложенных методов
2.7. Разработка алгоритма синтеза оптимальных эталонов
на основе метода главных компонент
2.7.1. Постановка задачи
2.7.2. Метод главных компонент
2.7.3. Разработка и проверка алгоритмов разложения
спектрального портрета слова на главные компоненты 135

	2.7.4. Разработка алгоритма синтеза оптимальных эталонов	
	на основе метода главных компонент	136
	2.7.5. Результаты	138
	2.8. Сжатие параметрического портрета на основе	
	полиномов Чебышева	141
	2.8.1. Постановка задачи	141
	2.8.2. Построение полиномов Чебышева	
	2.8.3. Разработка алгоритма формирования эталонов	
	на основе полиномов Чебышева	143
	2.8.4. Результаты экспериментов по формированию эталонов	
	на основе полиномов Чебышева	144
3.	마이트(BCC)	
	команд на основе сверточных нейронных сетей глубокого обучения	147
	3.1. Оценки работоспособности традиционных нейронных сетей	
	с одним и двумя скрытыми слоями в задаче распознавания	
	речевых команд	148
	3.2. Разработка структур нейронных сетей глубокого обучения	
	для распознавания речевых команд	156
	3.3. Экспериментальное оценивание характеристик	
	распознавания	160
	3.4. Обучение и тестирование CNN на данных, содержащих	
	шум кабины пилотов современного магистрального самолета	163
	3.5. Исследование возможности применения CNN	
	для распознавания отдельных фраз	170
	3.6. Улучшение качества распознавания отдельных фраз	
	при дополнительном обучении	179
	3.7. Выводы по разработке алгоритмов на основе	
	нейронных сетей	
Сп	исок литературы к части 1	183
ЧА	ACTЬ 2. Технология пространственного звука 3D-аудио	90
	Обзор предметной области	191
	4.1. Известные подходы для синтезирования эффекта	
	пространственного звука через наушники	192
	4.1.1. Дуплексная теория 1	92
	4.1.2. Теория, учитывающая антропозависимые	
	особенности слуха1	97

5.	Метод синтеза сигналов 3D-аудио для звукового интерфейса204
	5.1. Алгоритм синтеза сигнала 3D-аудио через наушники
	для работы в реальном времени
	5.2. Выбор «универсальной» антропозависимой характеристики
	для работы с 3D-аудио
	5.3. Вспомогательные инструменты анализа звуковых сигналов 214
6.	Программно-аппаратный комплекс исследования
	и отработки взаимодействия технологии 3D-аудио с летчиком
	через наушники
	6.1. Аппаратная часть комплекса
	6.2. Программная часть стенда: взаимодействие с оборудованием,
	обработка звука, пользовательский интерфейс
	6.3. Расчет положения виртуального источника звука относительно
	головы слушателя
	6.4. Интеграция программно-аппаратного комплекса исследования
	3D-аудио в стендовую среду КПМ-В
7.	
	характеристик интерфейса 3D-аудио
	7.1. Эксперименты с моночастотными сигналами
	(дуплексная теория)
	7.1.1. Эксперименты по измерению внутрислуховой временной
	разности и внутрислуховой разности интенсивностей
	7.1.2. Эксперименты по восприятию внутрислуховой временной
	разницы и внутрислуховой разницы интенсивностей 241
	7.2. Эксперименты со статическим положением головы
	7.2.1. Виды сигналов, применявшихся в оценке реализации
	технологии 3D-аудио. Характеристики, соответствие
	критериям применимости244
	7.2.2. Эксперименты по оценке эффективности реализованной
	технологии 3D-аудио, без использования датчика ориентации
	головы (HRTF-манекена)247
	7.2.3. Эксперименты по оценке эффективности реализованной тех-
	нологии 3D-аудио, без использования датчика ориентации
	головы (HRTF-человека)
	7.3. Эксперименты по определению потребной частоты
	обновления вектора пространственного направления
	источника сигнала 3D-аудио

7.4. Эксперименты по оценке характеристик технологии
3D-аудио, реализованной с учетом ориентации головы
8. Пример применения технологии 3D-аудио в звуковом
интерфейсе летательного аппарата
8.1. Методика оценки определения временных показателей
концентрации внимания на заданном объекте в сравнительных
экспериментах с использованием технологии 3D-аудио
8.2. Эксперименты по оценке эффективности метода синтеза
сигналов 3D-аудио для звукового интерфейса кабины летательного
аппарата в стендовой среде КПМ-В
8.2.1. Анализ временных циклограмм поиска цели 266
8.2.2. Статистический анализ результатов проведенных
экспериментов на стенде КПМ-В
Список литературы к части 2
жания воли и при воли при на при н
ЧАСТЬ 3. ОЦЕНИВАНИЕ ХАРАКТЕРИСТИК ЛЕТЧИКА НА ОСНОВЕ
современных информационных технологий
9. Разработка методов решения новых функциональных задач
на основе звуковых сигналов
9.1. Идентификация летчика в составе экипажа на основе
речевой передаточной функции
9.1.1. Понятие речевой передаточной функции диктора
по частоте
9.1.2. Описание используемых речевых данных и предлагаемой
методики идентификации человека-оператора
9.1.3. Методы классификации данных
9.1.4. Экспериментальные результаты исследования
возможности идентификации человека-оператора
по его речевым характеристикам
9.1.5. Анализ результатов
9.2. Оценивание возможностей пилотирования по звуковой
индикации на примере приборного захода на посадку
10. Оценивание психофизиологического состояния летчика
по управляющим сигналам, электроэнцефалограмме,
видеоизображениям лица301
10.1. Исследование возможности контроля психофизиологического
состояния на основе анализа управляющих сигналов летчика 301

10.1.1. Алгоритм вычисления оценок спектральных плотностей
управляющих сигналов летчика
10.1.2. Оценивание степени утомления по управляющим
сигналам летчика
10.1.3. Анализ функции когерентности между управляющими
сигналами и основными полетными данными
10.2. Методы анализа электроэнцефалограмм в целях оценки
состояния человека-оператора в процессе пилотирования 308
10.2.1. Постановка задачи
10.2.2. Описание экспериментов
10.2.3. Метод главных компонент
10.2.4. Определение минимально допустимой размерности
базиса из главных компонент
10.2.5. Исследование степени утомления человека-оператора
с помощью метода главных компонент
10.2.6. Отношение норм первых и вторых главных компонент
для альфа- и тетта-сигналов
10.3. Методика анализа параметров морганий в целях оценки
состояния человека-оператора
10.3.1. Детектор движений глаз
10.3.2. Интерпретация сигнала детектора движений глаз 330
10.3.3. Описание методики исследования и результаты
экспериментальных оценок
10.4. Контроль психофизиологического состояния оператора
по эмоциональному выражению лица и анализу характеристик
морганий на основе глубоких сверточных нейронных сетей 338
10.4.1. Описание методов исследования
10.4.2. Основные результаты
10.5. Пример информационно-измерительной системы
для оценивания состояния оператора в реальном масштабе
времени по изображению лица
Список литературы к части 3